Цифры в двоичной системе счисления. Системы счисления

Счисления - вторая по распространенности после привычной всем десятичной, хотя мало кто об этом задумывается. Причина такой востребованности в том, что именно она используется в Об этом поговорим позже, а для начала - пара слов о том, вообще система счисления.

Этим словосочетанием обозначают систему записи или другого визуального представления чисел. Это сухое определение. К сожалению, не все понимают, что скрывается за этими словами. Однако все достаточно просто, и первая система счисления появилась тогда же, когда человек научился считать. Самый простой способ представление чисел - это отождествление одних предметов с другими, ну вот хотя бы пальцев на руках и количества плодов, собранных за определенное время. Однако пальцев на руках значительно меньше, чем может быть исчисляемых предметов. Их стали заменять палочками или черточками на песке или камне. Это и была самая первая система счисления, хотя само понятие появилось значительно позже. Она носит название непозиционная, потому что каждая цифра в ней имеет строго определенное значение, вне зависимости от того, какую позицию в записи она занимает.

Но такая запись крайне неудобна, и позже пришла идея группировать предметы и каждую группу обозначать камнем, а не палочкой, ну или рисунком другой формы при записи. Это был первый шаг к созданию позиционных систем, к которым относится и двоичная система счисления. Однако окончательно они сформировались только после изобретения цифр. В силу того, что считать изначально людям было удобнее на пальцах, которых у нормального человека 10, именно десятичная система и стала наиболее распространенной. В распоряжении человека, использующего эту систему цифры, от 0 до 9. Соответственно, когда при счете человек доходит до 9, то есть исчерпывает запас цифр, он пишет единицу в следующий разряд, а единицы обнуляет. И в этом кроется суть позиционных систем счисления: значение цифр в числе напрямую зависит от того, какую позицию она занимает.

Двоичная система счисления предоставляет для расчётов только две цифры, легко догадаться, что это 0 и 1. Соответственно, новые разряды при записи появляются в этом случае гораздо чаще: первый переход регистра происходит уже на числе 2, именно оно двоичной системе обозначается как 10.

Очевидно, что на письме эта система также не слишком удобна, отчего же она так востребована? Все дело в том, что при построении вычислительных машин десятичная система оказалась крайне неудобной и невыгодной, так как производство устройства, имеющего десять различных состояний, довольно дорого, да и занимают они очень много места. Вот и взяли на вооружение придуманную еще инками двоичную систему.

Перевод в двоичную систему счисления вряд ли вызовет у кого-то затруднения. Самый простой и понятный способ сделать это - деление числа на два, до тех пор, пока в ответе не получится ноль. При этом остатки записываются отдельно справа налево последовательно. Рассмотрим на примере, возьмем число 73: 73\2 = 36 и 1 в остатке, единицы записываем в крайнем правом положении, все дальнейшие остатки записываем левее этой единицы. Если вы все сделали правильно, то у вас должно было получиться следующее число: 1001001.

Как же перевод числа в двоичную систему счисления осуществляет компьютер, ведь с клавиатуры мы вводим ему десятичные числа? Неужели также делит на 2? Естественно, нет. Каждой кнопке на клавиатуре соответствует определенная строка в таблице кодировок. Мы наживаем кнопку, программа, называемая драйвер, передает процессору определенную последовательность сигналов. Тот в свою очередь передает запрос в таблицу, какой символ соответствует этой последовательности, и выводит этот символ на экран, или же производит действие, если это необходимо.

Теперь вы знаете, какое значение в нашей жизни имеет двоичная система счисления. Ведь очень многое в нашем мире сейчас делается при помощи электронных вычислительных систем, которые, в свою очередь, были бы совершенно другими, если бы не было этой системы.

Введение………………………………………………………………………………

I. Понятие двоичной системы счисления…………………………………………………………………..

1.1. История двоичной системы счисления

1.2. Перевод чисел из двоичной системы счисления в десятичную

1.3. Перевод десятичного числа в двоичное

II. Почему удобна двоичная система? ………………………………………………

2.1. Достоинства двоичной системы

2.2. Недостатки двоичной системы

Заключение …………………………………………………………………………..

Библиографический список………………………………………………………....


Введение:

Кто стоит у истоков двоичной системы счисления, как давно и где ее начали применять, почему двоичная система счисления сохранилась до наших дней.

Понятие «число» является ключевым как для математики, так и для информатики. Люди всегда считали и записывали числа, даже 5 тысяч лет назад. Но записывали их по другим правилам, хотя в любом случае число изображалось с помощью любого или нескольких символов, которые назывались цифрами.

Язык чисел, как и любой другой, имеет свой алфавит. В том языке чисел, которым мы обычно пользуемся, алфавитом служат десять цифр – от 0 до 9. Это десятичная система счисления.

Системой счисления мы будем называть способ представления числа символами некоторого алфавита, которые называют цифрами.

Причина, по которой десятичная система счисления стала общепринятой, вовсе не математическая. Десять пальцев рук – вот аппарат для счета, которым человек пользуется с доисторических времен. Древнее написание десятичных цифр:


Понятие двоичной системы счисления.

Двоичная система счисления - позиционная система счисления с основанием два. (Позиционная система счисления (позиционная нумерация) - система счисления, в которой значение каждого числового знака (цифры) в записи числа зависит от его позиции (разряда).

История двоичной системы счисления.

Мысль о двоичной системе принадлежит Лейбницу, который полагал, что при трудных исследованиях в теории чисел она может иметь большие преимущества перед десятичной системой. Кроме того, при всяких арифметических операциях действия над числами, написанными в бинарной системе, облегчаются в высшей степени. Иезуит Буве (Bouvet), миссионер в Китае, которому Лейбниц писал о своём изобретении, сообщил ему, что в Китае существует загадочная надпись, которую можно вполне объяснить бинарной системой. Надпись эта, которую приписывают императору Фо-ги, жившему в 25 веке до н. э., основателю Китайской империи, покровителю наук и искусств, не могла быть объяснена китайскими учёными, которые считали её не имеющей смысла. Она состоит из ряда длинных и коротких чёрточек. Если принять, что длинная черта означает 1, а короткая 0, то вся надпись оказывается просто рядом натуральных чисел, написанных по двоичной системе. Вот эта надпись:

Двоичная система счисления оказалась удобной для использования в ЭВМ. Использование двоичной системы оказалось наиболее эффективным в электронных схемах: цифры 0 и 1 удобно кодировать уровнями напряжения, соответствующим напряжению на шинах питания, „0“ и „+V“ ; использование большего количества уровней привело бы к усложнению схем. Хотя были прецеденты создания и троичных ЭВМ.

В двоичной системе счисления используются всего две цифры 0 и 1. Другими словами, двойка является основанием двоичной системы счисления. (Аналогично у десятичной системы основание 10.)

Чтобы научиться понимать числа в двоичной системе счисления, сначала рассмотрим, как формируются числа в привычной для нас десятичной системе счисления.

В десятичной системе счисления мы располагаем десятью знаками-цифрами (от 0 до 9). Когда счет достигает 9, то вводится новый разряд (десятки), а единицы обнуляются и счет начинается снова. После 19 разряд десятков увеличивается на 1, а единицы снова обнуляются. И так далее. Когда десятки доходят до 9, то потом появляется третий разряд – сотни.

Двоичная система счисления аналогична десятичной за исключением того, что в формировании числа участвуют всего лишь две знака-цифры: 0 и 1. Как только разряд достигает своего предела (т.е. единицы), появляется новый разряд, а старый обнуляется.

0 – это ноль

1 – это один (и это предел разряда)

10 – это два

11 – это три (и это снова предел)

100 – это четыре

101 – пять

110 – шесть

111 – семь и т.д.

1.3. Перевод чисел из двоичной системы счисления в десятичную:

1. 10001001 = 1*2^{7} + 0*2^{6} + 0*2^{5} + 0*2^{4} + 0*2^{3} + 0*2^{2} + 0* 2^{1} + 0*2^{0} = 128 + 0 + 0 + 0 + 8 + 0 + 0 + 1 = 137

Т.е. число 10001001 по основанию 2 равно числу 137 по основанию 10. Записать это можно так:

10001001_{2} = 137_{10}

2. 1011_{2} = 1*2^3 + 0*2*2+1*2^1+1*2^0 =1*8 + 1*2+1=11_{10}

3. 10101010_{2} = 1*2^{7} + 0*2^{6} + 1*2^{5} + 0*2^{4} + 1*2^{3} + 0*2^{2} + 1*2^{1} + 0*2^{0} = 128 + 32 +8 + 2 = 170_{10}

4. 101101_{2} = 1*2^{5} + 0*2^{4} + 1*2^{3} + 1*2^{2} + 0*2^{1} + 1*2^{0} = 63_{10}

5. 100,101_{2} = 1*2^{2} +0*2^{1} + 0*2^{0} + 1*2^{-1} + 0*2^{-2} + 1*2^{-3} = 4 + 2 = 6Элементы оглавления не найдены. _{10}

6. 111101_{2} = 1*2^{5} + 1*2^{4} + 1*2^{3} + 1*2^{2} + 0*2^{1} + 1*2^{0} = 32 +16 + 13 = 61_{10}

7. 1001_{2} = 1*2^{3} + 0*2^{2} + 0*2^{1} + 1*2^{0} = 9

8. 10011,1_{2} = 1*2^{4} + 0*2^{3} + 0*2^{2} + 1*2^{1} + 1*2^{0} + 1*2^{-1} = 19,5

9. 11101,11_{2} = 1*2^{5} + 1*2^{4} + 1*2^{3} + 0*2^{1} +1*2^{0} + 1*2^{-1} = 57,5

10. 100111 = 1*2^{5} + 0*2^{4} + 0*2^{3} +1*2^{2} + 1*2^{1} + 1*2^{0} = 39

1.4. Перевод десятичного числа в двоичное:

Может потребоваться перевести десятичное число в двоичное. Один из способов – это деление на два и формирование двоичного числа из остатков. Например, нужно получить из числа 77 его двоичную запись:

77 / 2 = 38 (1 остаток)

38 / 2 = 19 (0 остаток)

19 / 2 = 9 (1 остаток)

9 / 2 = 4 (1 остаток)

4 / 2 = 2 (0 остаток)

2 / 2 = 1 (0 остаток)

1 / 2 = 0 (1 остаток)

Собираем остатки вместе, начиная с конца: 1001101. Это и есть число 77 в двоичном представлении. Проверим:

1. 1001101_{10} = 1*2^{6} + 0*2^{5} + 0*2^{4} + 1*2^{3} + 1*2^{2} + 0*2^{1} + 1*2^{0} = 64 + 8 + 5 = 77_{2}

2. 49_{10} = \dfrac{ 49 } { 2 } = 110001_{2}

3. 15_{10} = \dfrac{ 49 } { 2 } = 1111_{2}

4. 31_{10} = \dfrac{ 31 } { 2 } = 11111_{2}

5. 0,45_{10} = \dfrac{ 0,45 } { 2 } = 0,11100_{2}

6. 95_{10} = \dfrac{ 95 } {2 } = 1011111_{2}

7. 102_{10} = \dfrac{102 } { 2 } = 1100110_{2}

8. 58_{10} = \dfrac{ 58 } { 2 } = 110100_{2}

9. 4956_{10} = \dfrac{ 4956 } { 2 } = 101101011100_{2}

10. 125_{10} = \dfrac{ 125 } { 2 } = 10111101_{2}

2. Почему удобна двоичная система?

Стоит отметить, что двоичная система издавна была предметом пристального внимания ученых. Официальное рождение двоичной системы счисления связано с именем Г.В.Лейбница, опубликовавшего в 1703 г. статью, в которой он рассмотрел правила выполнения арифметических действий над двоичными числами. Во время работы ЭВМ постоянно происходит преобразование чисел из десятичной системы счисления в двоичную, и наоборот. Да и человеку, имеющему дело с ЭВМ, часто приходится прибегать к преобразованиям чисел.

Вот, что писал Лаплас об отношении великого немецкого математика Г.В. Лейбница к двоичной (бинарной) системе: «В своей бинарной арифметике Лейбниц видел прообраз творения. Ему представлялось, что единица представляет божественное начало, а нуль – небытиё и что высшее существо создает все сущее из небытия точно таким же образом, как единица и нуль в его системе выражают все числа».

Главное достоинство двоичной системы – простота алгоритмов сложения, вычитания, умножения и деления. Таблица умножения в ней совсем не требуется ничего запоминать, ведь любое число, умноженное на ноль, равно нулю, а умноженное на единицу равно самому себе. И при этом никаких переносов в следующие разряды, а они есть даже в троичной системе счисления.

Если отвлечься от технических деталей, то именно с помощью этих операций и выполняются все операции в компьютере, так как удалось создать надежно работающие технические устройства, которые могут со 100 процентной надежностью сохранять и распознавать не более двух различных состояний (цифр):

Электромагнитные реле (замкнуто/разомкнуто), широко использовались в конструкциях первых ЭВМ;

Участок поверхности магнитного носителя информации (намагничен/ размагничен);

Участок поверхности лазерного диска (отражает/не отражает);

Триггер, может устойчиво находиться в одном из двух состояний, широко используется в оперативной памяти компьютера.

Утверждение двоичной арифметики в качестве общепринятой при конструкции ЭВМ с программным управлением состоялось под влиянием работы Дж. фон Неймана о проекте первой ЭВМ с хранимой в памяти программой. Работа написана в 1946 году.

2.1. Достоинства двоичной системы счисления:

1. Достоинства двоичной системы счисления заключаются в простоте реализации процессов хранения, передачи и обработки информации на компьютере.

2. Для ее реализации нужны элементы с двумя возможными состояниями, а не с десятью.

3. Представление информации посредством только двух состояний надежно и помехоустойчиво.

4. Возможность применения алгебры логики для выполнения логических преобразований.

5. Двоичная арифметика проще десятичной.

2.2. Недостатки двоичной системы счисления:

1. Итак, код числа, записанного в двоичной системе счисления представляет собой последовательность из 0 и 1. Большие числа занимают достаточно большое число разрядов.

2. Быстрый рост числа разрядов - самый существенный недостаток двоичной системы счисления.

3.1. Заключение:

В ходе изучения данной темы мы выяснили, что двоичная система счисления намного старше электронных машин. Двоичной системой счисления люди интересуются давно. Особенно сильным это увлечение было с конца 16 до 19 века. Знаменитый Лейбниц считал двоичную систему счисления простой, удобной, красивой. Даже по его просьбе была выбита медаль в честь этой «диадической» системы (так называли тогда двоичную систему счисления).

Двоичная система счисления наиболее проста и удобна для автоматизации.

Наличие в системе всего лишь двух символов упрощает их преобразование в электрические сигналы.

Из любой системы счисления можно перейти к двоичному коду.

Почти все ЭВМ используют либо непосредственно двоичную систему счисления, либо двоичное кодирование какой-либо другой системы счисления.

Но двоичная система имеет и недостатки:

Ею пользуются только для ЭВМ для внутренней и внешней работы;

Быстрый рост числа разрядов, необходимых для записи чисел.

Библиографический список

1. Нестеренко А.В. ЭВМ и профессия программиста. М.: Просвещение, 1990.

2. Решетников В.Н., Сотников А.Н. Информатика – что это? М.: Радио и связь, 1989.

3. Фомин С.В. Системы счисления. М.: Наука, 1987.

4. Информатика: Системы счисления: спецвыпуск, №42 1995.

5. Информатика: Семинар, №2, №3 2006.

6. Информатика: В мир информатики, №8 2007.

7. http://www.internet-school.ru/Enc.ashx?item=3773

В курсе информатики, вне зависимости, школьном или университетском, особое место уделяется такому понятию как системы счисления. Как правило, на него выделяют несколько уроков или практических занятий. Основная цель - не только усвоить основные понятия темы, изучить виды систем счисления, но и познакомиться с двоичной, восьмеричной и шестнадцатеричной арифметикой.

Что это значит?

Начнем с определения основного понятия. Как отмечает учебник "Информатика", система счисления - записи чисел, в которой используется специальный алфавит или определенный набор цифр.

В зависимости от того, меняется ли значение цифры от ее положения в числе, выделяют две: позиционную и непозиционную системы счисления.

В позиционных системах значение цифры меняется вместе с ее положением в числе. Так, если взять число 234, то цифра 4 в ней означает единицы, если же рассмотреть число 243, то тут она будет уже означать десятки, а не единицы.

В непозиционных системах значение цифры статично, вне зависимости от ее положения в числе. Наиболее яркий пример - палочковая система, где каждая единица обозначается с помощью черточки. Неважно, куда вы припишите палочку, значение числа измениться лишь на единицу.

Непозиционные системы

К непозиционным системам счисления относятся:

  1. Единичная система, которая считается одной из первых. В ней вместо цифр использовались палочки. Чем их было больше, тем больше было значение числа. Встретить пример чисел, записанных таким образом, можно в фильмах, где речь идет о потерянных в море людях, заключенных, которые отмечают каждый день с помощью зарубок на камне или дереве.
  2. Римская, в которой вместо цифр использовались латинские буквы. Используя их, можно записать любое число. При этом его значение определялось с помощью суммы и разницы цифр, из которых состояло число. Если слева от цифры находилось меньшее число, то левая цифра вычиталась из правой, а если справа цифра была меньше или равна цифре слева, то их значения суммировались. Например, число 11 записывалось как XI, а 9 - IX.
  3. Буквенные, в которых числа обозначались с помощью алфавита того или иного языка. Одной из них считается славянская система, в которой ряд букв имел не только фонетическое, но и числовое значение.
  4. в которой использовалось всего два обозначения для записи - клинья и стрелочки.
  5. В Египте тоже использовались специальные символы для обозначения чисел. При записи числа каждый символ мог использоваться не более девяти раз.

Позиционные системы

Большое внимание уделяется в информатике позиционным системам счисления. К ним относятся следующие:

  • двоичная;
  • восьмеричная;
  • десятичная;
  • шестнадцатеричная;
  • шестидесятеричная, используемая при счете времени (к примеру, в минуте - 60 секунд, в часе - 60 минут).

Каждая из них обладает своим алфавитом для записи, правилами перевода и выполнения арифметических операций.

Десятичная система

Данная система является для нас наиболее привычной. В ней используются цифры от 0 до 9 для записи чисел. Они также носят название арабских. В зависимости от положения цифры в числе, она может обозначать разные разряды - единицы, десятки, сотни, тысячи или миллионы. Ее мы пользуемся повсеместно, знаем основные правила, по которым производятся арифметические операции над числами.

Двоичная система

Одна из основных систем счисления в информатике - двоичная. Ее простота позволяет компьютеру производить громоздкие вычисления в несколько раз быстрее, нежели в десятичной системе.

Для записи чисел используется лишь две цифры - 0 и 1. При этом, в зависимости от положения 0 или 1 в числе, его значение будет меняться.

Изначально именно с помощью компьютеры получали всю необходимую информацию. При этом, единица означала наличие сигнала, передаваемого с помощью напряжения, а ноль - его отсутствие.

Восьмеричная система

Еще одна известная компьютерная система счисления, в которой применяются цифры от 0 до 7. Применялась в основном в тех областях знаний, которые связаны с цифровыми устройствами. Но в последнее время она употребляется значительно реже, так как на смену ей пришла шестнадцатеричная система счисления.

Двоично-десятичная система

Представление больших чисел в двоичной системе для человека - процесс довольно сложный. Для его упрощения была разработана Используется она обычно в электронных часах, калькуляторах. В данной системе из десятичной системы в двоичную преобразуется не все число, а каждая цифра переводится в соответствующий ей набор нулей и единиц в двоичной системе. Аналогично происходит и перевод из двоичной системы в десятичную. Каждая цифра, представленная в виде четырехзначного набора нулей и единиц, переводится в цифру десятичной системы счисления. В принципе, нет ничего сложного.

Для работы с числам в данном случае пригодится таблица систем счисления, в которой будет указано соответствие между цифрами и их двоичным кодом.

Шестнадцатеричная система

В последнее время все большую популярность приобретает в программировании и информатике система счисления шестнадцатеричная. В ней используются не только цифры от 0 до 9, но и ряд латинских букв - A, B, C, D, E, F.

При этом, каждая из букв имеет свое значение, так A=10, B=11, C=12 и так далее. Каждое число представляется в виде набора из четырех знаков: 001F.

Перевод чисел: из десятичной в двоичную

Перевод в системах счисления чисел происходит по определенным правилам. Наиболее часто встречается перевод из двоичной в десятичную систему и наоборот.

Для того, чтобы перевести число из десятичной системы в двоичную, необходимо последовательно делить его на основание системы счисления, то есть, число два. При этом, остаток от каждого деления необходимо фиксировать. Так будет происходить до тех пор, пока остаток от деления не будет меньше или равен единице. Проводить вычисления лучше всего в столбик. Затем полученные остатки от деления записываются в строку в обратном порядке.

Например, переведем число 9 в двоичную систему:

Делим 9, так как число не делится нацело, то берем число 8, остаток будет 9 - 1 = 1.

После деления 8 на 2 получаем 4. Снова делим его, так как число делится нацело - получаем в остатке 4 - 4 = 0.

Проводим ту же операцию с 2. В остатке получаем 0.

В итоге деления у нас получается 1.

Вне зависимости от итоговой системы счисления, перевод чисел из десятичной в любую другую будет происходить по принципу деления числа на основу позиционной системы.

Перевод чисел: из двоичной в десятичную

Довольно легко переводить числа и в десятичную систему счисления из двоичной. Для этого достаточно знать правила возведения чисел в степень. В данном случае, в степень двойки.

Алгоритм перевода следующий: каждую цифру из кода двоичного числа необходимо умножить на двойку, причем, первая двойка будет в степени m-1, вторая - m-2 и так далее, где m - количество цифр в коде. Затем сложить результаты сложения, получив целое число.

Для школьников этот алгоритм можно объяснить проще:

Для начала берем и записываем каждую цифру, умноженную на двойку, затем проставляем степень двойки с конца, начиная с нуля. Потом складываем полученное число.

Для примера разберем с вами полученное ранее число 1001, переведя его в десятичную систему, и заодно проверим правильность наших вычислений.

Выглядеть это будет следующим образом:

1*2 3 + 0*2 2 +0*2 1 +1*2 0 = 8+0+0+1 =9.

При изучении данной темы удобно использовать таблицу со степенями двойки. Это существенно уменьшит количество времени, необходимое для проведения вычислений.

Другие варианты перевода

В некоторых случаях перевод может осуществляться между двоичной и восьмеричной системой счисления, двоичной и шестнадцатеричной. В таком случае можно пользоваться специальными таблицами или же запустить на компьютере приложение калькулятор, выбрав во вкладке вид вариант «Программист».

Арифметические операции

Вне зависимости от того, в каком виде представлено число, с ним можно проводить привычные для нас вычисления. Это может быть деление и умножение, вычитание и сложение в системе счисления, которую вы выбрали. Конечно, для каждой из них действуют свои правила.

Так для двоичной системы разработаны свои таблицы для каждой из операций. Такие же таблицы используются и в других позиционных системах.

Заучивать их необязательно - достаточно просто распечатать и иметь под рукой. Также можно воспользоваться калькулятором на ПК.

Одна из важнейших тем в информатике - система счисления. Знание этой темы, понимание алгоритмов перевода чисел из одной системы в другую - залог того, что вы сможете разобраться в более сложных темах, таких как алгоритмизация и программирование и сможете самостоятельно написать свою первую программу.

Двоичная система счисления сегодня используется практически во всех цифровых устройствах. Компьютеры, контроллеры и другие вычислительные устройства производят вычисления именно в двоичной системе. Цифровые устройства записи и воспроизведения звука, фото и видео хранят и обрабатывают сигналы в двоичной системе счисления. Передача информации по цифровым каналам связи также использует модель двоичной системы счисления.

Система носит такое название, потому что основанием системы является число два (2 ) или в двоичной системе 10 2 - это значит что для изображения чисел используется только две цифры "0" и "1". Двоечка записанная справа внизу от числа, здесь и далее будет обозначать основание системы счисления. Для десятичной системы основание обычно не указывают.

Ноль - 0 ;
Один - 1 ;

А что делать дальше? Все цифры кончились. Как же изобразить число два? В десятичной системе, в подобной ситуации (когда закончились цифры), мы вводили понятие десятка, здесь же мы вынуждены ввести понятие "двойка" и скажем, что два - это одна двойка и ноль единиц. А это уже можно и записать как - "10 2 ".

Итак, Два - 10 2 (одна двойка, ноль единиц)
Три - 11 2 (одна двойка, одна единица)

Четыре - 100 2 (одна четверка, ноль двоек, ноль единиц)
Пять - 101 2 (одна четверка, ноль двоек, одна единица)
Шесть - 110 2 (одна четверка, одна двойка, ноль единиц)
Семь - 111 2 (одна четверка, одна двойка, одна единица)

Возможности трех разрядов исчерпались, вводим более крупную единицу счета - восьмерку (осваиваем новый разряд).

Восемь - 1000 2 (одна восьмерка, ноль четверок, ноль двоек, ноль единиц)
Девять - 1001 2 (одна восьмерка, ноль четверок, ноль двоек, одна единица)
Десять - 1010 2 (одна восьмерка, ноль четверок, одна двойка, ноль единиц)
...
и так далее...
...

Всегда, когда возможности задейсвованых разрядов, для отображения следующего числа, исчерпываются, мы вводим более крупные единицы счета, т.е. задействуем следующий разряд.

Рассмотрим число 1011 2 записанное в двоичной системе счисления. Про него можно сказать, что оно содержит: одну восьмерку, ноль четверок, одну двойку и одну единицу. И получить его значение через входящие в него цифры можно следующим образом.

1011 2 = 1 *8+0 *4+1 *2+1 *1, здесь и далее знак * (звездочка) означает умножение.

Но ряд чисел 8, 4, 2, 1 есть не что иное, как целые степени числа два (основания системы счисления) и поэтому можно записать:

1011 2 = 1 *2 3 +0 *2 2 +2 *2 1 +2 *2 0

Подобным образом для двоичной дроби (дробного числа) например: 0.101 2 (пять восьмых), про него можно сказать, что оно содержит: одну вторую, ноль четвертых и одну восьмую долю. И его значение можно вычислить следующим образом:

0.101 2 = 1 *(1/2) + 0 *(1/4) + 1 *(1/8)

И здесь ряд чисел 1/2; 1/4 и 1/8 есть не что иное, как целые степени числа два и мы также можем записать:

0.101 2 = 1 *2 -1 + 0 *2 -2 + 1 *2 -3

Для смешанного числа 110.101 аналогичным образом можем записать:

110.101 = 1 *2 2 +1 *2 1 +0 *2 0 +1 *2 -1 +0 *2 -2 +1 *2 -3

Давайте пронумеруем разряды целой части двоичного числа, справа налево, как 0,1,2…n (нумерация начинается с нуля!). А разряды дробной части, слева направо, как -1,-2,-3…-m. Тогда значение некоторого двоичного числа может быть вычислено по формуле:

N = d n 2 n +d n-1 2 n-1 +…+d 1 2 1 +d 0 2 0 +d -1 2 -1 +d -2 2 -2 +…+d -(m-1) 2 -(m-1) +d -m 2 -m

Где: n - количество разрядов в целой части числа минус единица;
m - количество разрядов в дробной части числа
d i - цифра стоящая в i -м разряде

Эта формула называется формулой разложения двоичного числа, т.е. числа записанного в двоичной системе счисления. Но если в этой формуле число два заменить на некоторое абстрактное q , то мы получим формулу разложения для числа записанного в q-й системе счисления:

N = d n q n +d n-1 q n-1 +…+d 1 q 1 +d 0 q 0 +d -1 q -1 +d -2 q -2 +…+d -(m-1) q -(m-1) +d -m q -m

С помощью этой формулы вы всегда сможете вычислить значение не только двоичного числа, но и числа записанного в любой другой позиционной системе счислени. О других системах счисления рекомендуем почитать следующие статьи.

Система счисления - это способ отображения чисел на бумаге. Они используются в расчетах на оборудовании и цифровой аппаратуре. Двоичная система счисления сейчас представляет собой один из наиболее востребованных инструментов в вычислительных приборах. Рассмотрим особенности работы с этой системой счисления.

История возникновения двоичной системы счисления

Ученые древнего мира предложили производить вычисления, используя лишь 2 цифры, и предположили, что за таким методом расчета будущее. Это объясняется простотой такого метода исчисления: всего 2 положения (0 и 1), 2 позиции, например, есть сигнал или нет сигнала. Немецкий математик Лейбниц полагал, что математические операции, осуществляемые над 2 цифрами, несут в себе определенный порядок.

До 40-х годов 20 века теория двоичной системы не развивалась, пока американский ученый Клод Шеннон не предложил применять ее в работе электронных схем. Оказалось, что их использование в ПЭВМ гораздо предпочтительнее, ведь человеку непросто запоминать громоздкое скопление нулей и единиц. А в компьютере достаточно создать устройство, имеющее логические 0 и 1, то есть обладающее не более 2 логическими состояниями. Это может быть намагниченный или размагниченный сердечник, закрытый или открытый трансформатор и т.д. Всего 2 положения, а не 10, как могло бы быть при использовании десятичной системы при компьютерных вычислениях.

Характеристики двоичной системы счисления

К особенностям двоичной системы счисления следует отнести:

  • Использование всего пары цифр (0 и 1). Основание такой системы равно 2.
  • Алгебраические операции, проводимые с числами из двух цифр, не представляют большой сложности.
  • Хранение и преобразование сигналов видеоаппаратурой и приборами записи осуществляется в коде, состоящем из 0 и 1.
  • Цифровые каналы связи обмениваются данными, используя их представление в виде 0 и 1.

Счет в двоичной системе

И затем для каждой цифры по порядку идет повышение разряда:

100 - четыре.

110 - шесть.

После 7 цифры записываются в виде 4 разрядов:

1000 - восемь.

1001 - девять.

1010 - десять.

1011 - одиннадцать.

1100 - двенадцать.

1101 - тринадцать.

1110 - четырнадцать.

Перевод чисел из двоичной системы в десятичную

Представление десятичных чисел в двоичной системе делает их довольно громоздкими. Рассмотрим как происходит обратный процесс: перевод числа, состоящего из 0 и 1, в удобный для нас вид. Например, нужно перевести двоичный код 10101110 в десятичный вид.

Его можно разбить по степеням, как это выполняется в десятичной системе. Так, число 1587 можно отобразить как:

1000 + 500 + 80 + 7.

Или еще одним способом:

1*10 3 + 5*10 2 + 8*10 1 + 7*10 0 .

В предыдущей записи просуммированы степени, соответствующие разряду каждой цифры за вычетом 1. За основание степени взято число10, потому что это десятичная система счисления. Этот метод можно применить к числу, представленному в двоичном виде. Только за основание степени следует брать цифру 2. Получается:

10101110 = 1*2 7 + 0*2 6 + 1*2 5 + 0*2 4 + 1*2 3 + 1*2 2 + 1*2 1 + 0*2 0 = 128 + 0 + 32 + 0 + 8 + 4 + 2 + 0 = 174.

Степени двойки выбираются по следующему принципу: необходимо посчитать разряд цифры и вычесть 1 из этого значения. Следует помнить, что разряд увеличивается справа налево. Так, самая первая единица имеет восьмой разряд, тогда ее надо умножить на 2 7 и т.д.

Таким образом, двоичная форма числа 10101110 - это 174 в десятичном представлении. Корректная запись выглядит так:

10101110 2 = 174 10 .

Бывает необходимость в обратном процессе: перевести десятичный вид записи в последовательность из 0 и 1. Это выполняется путем деления на 2 и образованием двоичного числа из остатка. Например, число 69.

Делимое Делитель Частное Остаток
69 2 34 1
34 2 17 0
17 2 8 1
8 2 4 0
4 2 2 0
2 2 1 0
1 2 0 1

Смотрим на остаток. Получаем число в двоичной форме, начиная с последней строчки: 1000101 (эти цифры расположены в столбце «Остаток», если смотреть снизу вверх). Нужно проверить полученный результат:

1000101 = 1*2 6 + 0*2 5 + 0*2 4 + 0*2 3 + 1*2 2 + 0*2 1 + 1*2 0 = 64 + 4 +1 = 69.

Математические операции с двоичными числами

Сложение.

Это основная арифметическая операция при расчетах на компьютерах. Основные принципы сложения двоичных чисел опираются на правила:

Таким образом, складывая в столбик 1101 2 и 110 2 , получаем 10011 2 или 19 10 .

Вычитание .

Эта операция идентична сложению, если представить, что одно из двоичных чисел является отрицательным. В таком случае нужно учитывать модули складываемых чисел.

Правила, используемые при вычитании:

0 - 1 = 1 (занимаем из старшего разряда).

Например, вычитаем из 1110 2 число 101 2 , получаем 1001 2 или 9 10 .

Умножение .

На бумаге умножение представляет собой совокупность операций сложения. Например, необходимо произвести умножение 10 10 на 40 10 .

Преобразуем их в совокупность 0 и 1:

10 10 =00001010 2

40 10 = 00101000 2

Оба числа в двоичной форме имеют слева и справа несколько нулей, которые не играют роли в операции умножения. Значимые части - это 101 в числе 10 и 101 в числе 40, расположенные между нулями. Их нужно перемножить, а нули просто дописать в итоговом результате:

Перемножаем левую и правую единицу второго множителя на первый множитель, затем суммируем полученный промежуточный результат. Нули складываем и переписываем в итоговый результат умножения, который в двоичной форме выглядит так: 000000110010000 2 (нижняя строчка слева направо).

Проверяя, получаем:

1 * 2 8 + 1 * 2 7 + 1 * 2 4 = 256 + 128 + 16 = 400.

Деление .

Рассмотрим наиболее простой пример деления без остатка. Надо разделить 14 10 на 2 10 . В двоичном виде это выглядит так:

14 10 = 1110 2 .

Делим 1110 2 на 10 2 в столбик:

1110 |10

Получаем число 111 2 , что равняется 7 в десятичной системе счисления. При проверке умножением доказываем точность результата:

Смотрим на нижнюю строчку слева направо, результат умножения - 1110 2 . Ответ верный.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.